3.100 \(\int \frac{\text{csch}(e+f x)}{\sqrt{a+b \sinh ^2(e+f x)}} \, dx\)

Optimal. Leaf size=42 \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{a} \cosh (e+f x)}{\sqrt{a+b \cosh ^2(e+f x)-b}}\right )}{\sqrt{a} f} \]

[Out]

-(ArcTanh[(Sqrt[a]*Cosh[e + f*x])/Sqrt[a - b + b*Cosh[e + f*x]^2]]/(Sqrt[a]*f))

________________________________________________________________________________________

Rubi [A]  time = 0.0802426, antiderivative size = 42, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {3186, 377, 206} \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{a} \cosh (e+f x)}{\sqrt{a+b \cosh ^2(e+f x)-b}}\right )}{\sqrt{a} f} \]

Antiderivative was successfully verified.

[In]

Int[Csch[e + f*x]/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

-(ArcTanh[(Sqrt[a]*Cosh[e + f*x])/Sqrt[a - b + b*Cosh[e + f*x]^2]]/(Sqrt[a]*f))

Rule 3186

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Cos[e + f*x], x]}, -Dist[ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - b*ff^2*x^2)^p, x], x, Cos
[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\text{csch}(e+f x)}{\sqrt{a+b \sinh ^2(e+f x)}} \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1-x^2\right ) \sqrt{a-b+b x^2}} \, dx,x,\cosh (e+f x)\right )}{f}\\ &=-\frac{\operatorname{Subst}\left (\int \frac{1}{1-a x^2} \, dx,x,\frac{\cosh (e+f x)}{\sqrt{a-b+b \cosh ^2(e+f x)}}\right )}{f}\\ &=-\frac{\tanh ^{-1}\left (\frac{\sqrt{a} \cosh (e+f x)}{\sqrt{a-b+b \cosh ^2(e+f x)}}\right )}{\sqrt{a} f}\\ \end{align*}

Mathematica [A]  time = 0.17785, size = 49, normalized size = 1.17 \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{a} \cosh (e+f x)}{\sqrt{2 a+b \cosh (2 (e+f x))-b}}\right )}{\sqrt{a} f} \]

Antiderivative was successfully verified.

[In]

Integrate[Csch[e + f*x]/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

-(ArcTanh[(Sqrt[2]*Sqrt[a]*Cosh[e + f*x])/Sqrt[2*a - b + b*Cosh[2*(e + f*x)]]]/(Sqrt[a]*f))

________________________________________________________________________________________

Maple [B]  time = 0.069, size = 113, normalized size = 2.7 \begin{align*} -{\frac{1}{2\,f\cosh \left ( fx+e \right ) }\sqrt{ \left ( a+b \left ( \sinh \left ( fx+e \right ) \right ) ^{2} \right ) \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}\ln \left ({\frac{1}{ \left ( \sinh \left ( fx+e \right ) \right ) ^{2}} \left ( \left ( a+b \right ) \left ( \cosh \left ( fx+e \right ) \right ) ^{2}+2\,\sqrt{a}\sqrt{b \left ( \cosh \left ( fx+e \right ) \right ) ^{4}+ \left ( a-b \right ) \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}+a-b \right ) } \right ){\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{a+b \left ( \sinh \left ( fx+e \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2),x)

[Out]

-1/2*((a+b*sinh(f*x+e)^2)*cosh(f*x+e)^2)^(1/2)/a^(1/2)*ln(((a+b)*cosh(f*x+e)^2+2*a^(1/2)*(b*cosh(f*x+e)^4+(a-b
)*cosh(f*x+e)^2)^(1/2)+a-b)/sinh(f*x+e)^2)/cosh(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{csch}\left (f x + e\right )}{\sqrt{b \sinh \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(csch(f*x + e)/sqrt(b*sinh(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 2.07714, size = 1561, normalized size = 37.17 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(-((a + b)*cosh(f*x + e)^4 + 4*(a + b)*cosh(f*x + e)*sinh(f*x + e)^3 + (a + b)*sinh(f*x + e)^4 + 2*(3*
a - b)*cosh(f*x + e)^2 + 2*(3*(a + b)*cosh(f*x + e)^2 + 3*a - b)*sinh(f*x + e)^2 - 2*sqrt(2)*(cosh(f*x + e)^2
+ 2*cosh(f*x + e)*sinh(f*x + e) + sinh(f*x + e)^2 + 1)*sqrt(a)*sqrt((b*cosh(f*x + e)^2 + b*sinh(f*x + e)^2 + 2
*a - b)/(cosh(f*x + e)^2 - 2*cosh(f*x + e)*sinh(f*x + e) + sinh(f*x + e)^2)) + 4*((a + b)*cosh(f*x + e)^3 + (3
*a - b)*cosh(f*x + e))*sinh(f*x + e) + a + b)/(cosh(f*x + e)^4 + 4*cosh(f*x + e)*sinh(f*x + e)^3 + sinh(f*x +
e)^4 + 2*(3*cosh(f*x + e)^2 - 1)*sinh(f*x + e)^2 - 2*cosh(f*x + e)^2 + 4*(cosh(f*x + e)^3 - cosh(f*x + e))*sin
h(f*x + e) + 1))/(sqrt(a)*f), sqrt(-a)*arctan(sqrt(2)*(cosh(f*x + e)^2 + 2*cosh(f*x + e)*sinh(f*x + e) + sinh(
f*x + e)^2 + 1)*sqrt(-a)*sqrt((b*cosh(f*x + e)^2 + b*sinh(f*x + e)^2 + 2*a - b)/(cosh(f*x + e)^2 - 2*cosh(f*x
+ e)*sinh(f*x + e) + sinh(f*x + e)^2))/(b*cosh(f*x + e)^4 + 4*b*cosh(f*x + e)*sinh(f*x + e)^3 + b*sinh(f*x + e
)^4 + 2*(2*a - b)*cosh(f*x + e)^2 + 2*(3*b*cosh(f*x + e)^2 + 2*a - b)*sinh(f*x + e)^2 + 4*(b*cosh(f*x + e)^3 +
 (2*a - b)*cosh(f*x + e))*sinh(f*x + e) + b))/(a*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{csch}{\left (e + f x \right )}}{\sqrt{a + b \sinh ^{2}{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(f*x+e)/(a+b*sinh(f*x+e)**2)**(1/2),x)

[Out]

Integral(csch(e + f*x)/sqrt(a + b*sinh(e + f*x)**2), x)

________________________________________________________________________________________

Giac [B]  time = 1.4009, size = 143, normalized size = 3.4 \begin{align*} \frac{2 \, \arctan \left (-\frac{\sqrt{b} e^{\left (-2 \, f x - 2 \, e\right )} - \sqrt{4 \, a e^{\left (-2 \, f x - 2 \, e\right )} - 2 \, b e^{\left (-2 \, f x - 2 \, e\right )} + b e^{\left (-4 \, f x - 4 \, e\right )} + b} - \sqrt{b}}{2 \, \sqrt{-a}}\right )}{\sqrt{-a} f} - \frac{2 \, \sqrt{-a} \arctan \left (\frac{\sqrt{-a}}{\sqrt{b}}\right )}{a f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

2*arctan(-1/2*(sqrt(b)*e^(-2*f*x - 2*e) - sqrt(4*a*e^(-2*f*x - 2*e) - 2*b*e^(-2*f*x - 2*e) + b*e^(-4*f*x - 4*e
) + b) - sqrt(b))/sqrt(-a))/(sqrt(-a)*f) - 2*sqrt(-a)*arctan(sqrt(-a)/sqrt(b))/(a*f)